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A B S T R A C T   

Disease is a significant constraint faced by aquaculture, and its prevention and control bring together a hub of 
recent research. Several resources and resorts have been applied to prevent diseases in aquaculture. Probiotics 
are known to be beneficial natural derivatives that have several benefits in aquaculture. Currently, several 
commercial probiotics are used in the aquaculture industry that contains one or more live microorganisms. In the 
aquaculture industry, Bacillus species is one of the most widely used probiotic organisms. They are considered 
distinctive and are found to be natural members of the gut microbiota of some fish species. The safety of 
beneficial microorganisms is essential since some of these organisms are reported to harbor traits that might be 
transferable to their hosts. In this study, the safety of some Bacillus-based commercial probiotics used in aqua-
culture in terms of virulence and drug resistance were assessed. Commercial Bacillus species after isolation were 
screened for the presence of virulence genes (nheA, nheB, nheC, hblA, hblC, hblD, cytK, and entFM) and one emetic 
gene (ces), as well as their resistance to some antibiotics. Most isolates did not possess any of the virulence genes 
assessed. Nonetheless, three isolates harbored the nheABC and entFM enterotoxin genes, while two had the hblA, 
hblC, hblD, cytK genes. None of the isolates possessed the ces emetic gene. Antibiotic resistance assessment 
revealed most of the isolates to be resistant to β-lactam antibiotics, including penicillin, ampicillin, oxacillin, 
cefuroxime, and ceftriaxone, and also to minocycline.   

1. Introduction 

Aquaculture refers to the farming or propagation of aquatic organ-
isms including fish, mollusks, crustaceans, and aquatic plants, for 
diverse purposes such as; protein source, medicine, aesthetic value, 
research, etc. (FAO, 2016; Troell et al., 2017), and is noted to have a 
great history existing since 2000− 1000 B.C (Swann, 1992). Recently, 
aquaculture is responsible for a much-increasing share of global aquatic 
food production and accounted for 65 % of the increase in fish pro-
duction from 2005 to 2014 (FAO, 2016). Over the years, aquaculture has 
succored in the deficit in capture fisheries, contributing to global fish 
production reaching 46.0 % in 2018, up from 25.7 % in 2000 (FAO, 

2020). 
Aquaculture reportedly to contributes more than 50 % to the world’s 

fish and seafood production meant for human consumption and needs 
(Thilsted et al., 2014) and is estimated to reach 62 percent by 2030 
(Msangi & Batka, 2015), showing the significant role aquaculture con-
tinues to play in the modern-day. Nevertheless, the occurrence of disease 
has been among the tremendous constraints to aquaculture develop-
ment. Even though economic losses resulting from diseases in aquacul-
ture globally have not been assembled, it is sure to be devastating since 
research has shown the severity of disease outbreak in aquaculture en-
vironments, which in some cases can lead to total mortality (Faruk et al., 
2004; Kalaimani et al., 2013; Rodger, 2016; Tavares-Dias & Martins, 
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2017). 
Bacterial diseases are prime causes of high mortality in wild and 

cultured fish (Pérez-Sánchez et al., 2018). Various measures such as 
antibiotic usage have been employed to control and eradicate diseases 
and their related impacts confronting aquaculture production (Scarfe 
et al., 2008; Subasinghe, 2009a). Antibiotics have been applied in 
managing diseases in aquaculture for several decades, but recent 
research has pointed out its adverse effects and has classified antibiotic 
use as a global health problem (Landers et al., 2012; Marshall & Levy, 
2011; Pérez-Sánchez et al., 2014). The utilization of probiotics that can 
control pathogenic organisms through various means has been consid-
ered a sure alternative in place of antibiotics in aquaculture (Hoseinifar 
et al., 2018; P et al., 2012; Ringø et al., 2020). 

Probiotics are live microorganisms that present several health ben-
efits to the host when administered in an adequate dosage (Alayande 
et al., 2020). The benefits of probiotics in aquaculture go beyond the 
enhancement of the health status of aquatic organisms (George Kerry 
et al., 2018; Yirga, 2015), disease resistance (Kuebutornye et al., 2020a, 
b), and growth improvement (Patil et al., 2015; Ringø et al., 2020). 
Some probiotics are known to assist in improving water quality (Hasan 
& Banerjee, 2020; Hlordzi et al., 2020) and aid in maintaining an 
environmental balance (Jahangiri & Esteban, 2018; Mohamed, 2013). 

Based on concerns raised on the use of antibiotics as feed additives, 
including acquired resistance against commonly used antibiotics (Aly & 
Albutti, 2014; Sun et al., 2020), and the European Union’s ban placed on 
the application of antibiotics as feed additives beginning form the year 
2006 (European Union, 2006), probiotics have been considered as a 
replacement for these antibiotic additives (Patil et al., 2015; Yirga, 
2015). Even though probiotics have been widely accepted not only in 
the aquaculture industry but in many other animal rearing sectors and 
also in human food and medicine industries (George Kerry et al., 2018), 
its safety must be thoroughly studied and analyzed to make sure this 
helpmeet does not turn to cause any adverse effects on the host 
organisms. 

Research and studies have centered on and have proven the impor-
tance and effectiveness of different probiotics, and these studies have 
helped in scientifically establishing the several benefits of probiotics 
(Kuebutornye et al., 2020c; P et al., 2012; Patil et al., 2015). Meanwhile, 
there are not many studies to elaborate and prove its safety to their host 
organism (Alayande et al., 2020; Doron & Snydman, 2015) 

In 2017 the global market for probiotic supplement ingredients in 
food reached USD 47.1 Billion in 2018 and was projected to grow at a 
Compound Annual Growth Rate (CAGR) of 6.8 % from 2019 to 2026 
(GlobalNewswire, 2020). Probiotics are administered as food supple-
ments or directly added to the culture medium, including tanks or ponds 
in the case of aquaculture (Verschuere et al., 2000). 

In expanding probiotic use in the human market, much concern on 
some safety issues such as mislabelling of the probiotics, microbial 
contamination, and pathogenic probiotics have been raised (Jackson 
et al., 2019; Sorokulova, 2013). There have been reports concerning the 
contamination of final probiotic products due to violation of good 
manufacturing practices, which releases life-threatening pathogens in 
the public domain (Cohen, 2018). For example, reports such as fatal 
infections in an immune-compromised patient due to Bacillus strain 
(Oggioni et al., 1998) and death of a premature 8-day old infant battling 
gastrointestinal mucormycosis after fungal contamination of probiotics 
supplement has been witnessed (Vallabhaneni et al., 2015). While few 
studies have assessed the safety of human and animal use of probiotics 
(Salvetti et al., 2016; Wisener et al., 2014), there is still a lack of systemic 
surveillance in detecting post-marketing hazards microorganisms used 
in probiotics might cause (Kolaček et al., 2017). Several commercial 
probiotics are used in the aquaculture industry, including Lactobacillus, 
Bifidobacteria, yeast, Bacillus, and many others since they are considered 
and scientifically proven beneficial (Fijan, 2014). 

Bacillus species are gram-positive anaerobic bacteria known to 
exhibit a wide range of physiological characteristics (Jahangiri & 

Esteban, 2018; Standards Unit & Public Health England, 2018). Even 
though some Bacillus species are known to possess some disadvanta-
geous traits (Doron & Snydman, 2015) and are also producers of toxins 
in their human and animal hosts (Elshaghabee et al., 2017), most of 
them are not pathogenic and are used as a dietary supplement for the 
improvement of human and animal health (George Kerry et al., 2018; 
Lee et al., 2019; Mongkolthanaruk, 2012). Bacillus genus belongs to the 
phylum Firmicutes with 293 species and subspecies, constituting a 
phylogenetically incoherent group (Patel & Gupta, 2020). 

In aquaculture, the Bacillus species is one of the most widely used 
probiotic organisms. They have also been found to be natural members 
of the gut microbiota of some fish species (Kuebutornye et al., 2020b; 
Lavrador et al., 2018). The genus Bacillus is pervasive in almost all en-
vironments, including terrestrial, aquatic, and the atmosphere (Hong 
et al., 2005). Bacillus species are considered distinctive and are presently 
used as probiotic organisms (Soltani et al., 2019). Dietary supplemen-
tation of Bacillus species has enhanced immune responses, improved 
disease resistance, growth performance, and resistance against patho-
genic bacteria infections (Guo et al., 2016; Selim & Reda, 2015). Besides 
playing a beneficial role in eliminating unwanted products from aqua-
culture environments, Bacillus species are also known for sustaining an 
optimum and ideal water quality which in turn reduces stress that can 
continuously cause an increase in survival and also aid in achieving an 
immune and physiological balance (Elsabagh et al., 2018; Hlordzi et al., 
2020). They also perform some inhibitory activity against the growth of 
plant pathogens (Fira et al., 2018). Nevertheless, much study is required 
on the efficiency of some species in specific aquatic organisms and their 
water quality management characteristics. 

The safety of beneficial microorganisms is essential because of the 
ability of some of these organisms to harbor virulence and drug resis-
tance traits that might be transferable to their hosts (Jackson et al., 
2019). Several studies have elaborated on the poor microbiological 
quality of many commercial probiotic formulations regarding identifi-
cation, viability, or the number of microorganisms (Celandroni et al., 
2019). For instance, a considerable number of probiotics produced in 
Asia were found to be poorly defined on the species level (Hong et al., 
2005). With this, it can be argued that these formulations may not 
possess all the expected health benefits, and they may also pose health 
risks to consumers. In addition, virulence genes in beneficial bacteria are 
a major safety concern associated with their use (Cohen, 2018). 

Virulence and antibiotic resistance factors are associated with both 
pathogenic organisms and some named beneficial microorganisms 
(Berthold-Pluta et al., 2019; Owusu-Kwarteng et al., 2017). Several 
studies conducted on probiotics used in both animal and human diets 
indicated the prevalence of virulence genes and also observed adverse 
effects which attributed to these virulence genes detected (Taras et al., 
2006; Vallabhaneni et al., 2015; Wisener et al., 2014). The Bacillus cereus 
group belonging to the genus Bacillus has been identified by several 
researchers to possess some virulent traits and labeled as pathogenic 
(Ehling-Schulz et al., 2019; Gao et al., 2018; Park et al., 2009). They are 
known to be a principal cause of food poisoning. Also, antibiotics re-
sistances, together with their Antibiotic Resistance Genes (ARGs), have 
in recent times been identified in aquatic environments (Shen et al., 
2020) and has been attributed to several factors, including the indis-
criminate use of antibiotics in aquaculture, among others (Zhang et al., 
2009). 

Nevertheless, the failure to ascertain and intuit the possibility of 
beneficial microorganisms used in aquatic environments as a source may 
also cause the prevalence of ARGs. As far as the 1970′s some Bacillus 
species were identified to possess certain antibiotic resistance traits 
(Bernhard et al., 1978); yet still, some of these species are used in both 
human and animal field without thorough investigation on their 
composition and safety (Lefevre et al., 2017; Sun et al., 2020). This study 
seeks to evaluate the safety of some Bacillus used in commercial pro-
biotics formulation in aquaculture in terms of the presence and preva-
lence of some virulence encoding genes and their antimicrobial 
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susceptibility 

2. Materials and method 

2.1. Acquisition of commercial probiotic formulations 

Thirty-two Bacillus-based commercial probiotic formulations used in 
aquaculture were purchased for this study. All formulations were 
selected randomly and purchased from the market and investigated 
before the expiration date. 

2.2. Isolation and bacteria 

All samples were in powdery form. For isolation, the samples were 
dissolved in sterile phosphate-buffered saline (PBS) in 150 mL tubes and 
homogenized using 15 mL Borosilicate glass tissue homogenizer 
(Shanghai Lenggu Instrument Company, Shanghai, China) for 2 min. 
The homogenized solution was serially diluted (10-fold) in sterile PBS, 
and 0.1 mL of each aliquot was inoculated onto Luria broth (LB) agar 
plates. Each inoculation was done in triplicates. Plates and content were 
incubated at 37 ◦C for 24 h and observed for growth. Distinct bacterial 
colonies were randomly selected and re-incubated in LB liquid media for 
12 h. Re-streaking was performed to ensure the isolation of pure strain 
from a single species as described in (Owusu-Kwarteng et al., 2017). 

2.3. Identification of bacteria 

The bacteria isolated in the current study were characterized based 
on their morphological, biochemical tests and identified by molecular 
16S rRNA gene sequence analysis using universal bacterial primers 27 F 
(AGAGTTTGATCCTGGCTCAG) and 1492R (GGTTACCTTGTTAC-
GACTT) (Chen et al., 2017) through Polymerase Chain Reaction (PCR) 
to identify the isolates further. The PCR reaction system contained 1 μL 
of each primer, 1 μL template of each isolate, 12.5 μL of 10 × rTaq 
buffer, and 9.5 μL of double-distilled water. The PCR amplification was 
initiated with denaturation at 96 ◦C for 5 min followed by 33 cycles of 
denaturation at 96 ◦C for 30 s, annealing at 55 ◦C for 45 s, and extension 
at 72 ◦C for 1 min 30 s; the amplification was completed by holding the 
reaction mixture at 72 ◦C for 10 min. The selected bacteria strains 
biochemical characterization was performed using commercial kits 
procured from Guangdong Huankai Microbial Sci. and Tech. Co., Ltd. 
(Guangdong, China) following the company’s instructions. With the 
help of a Bacillus cereus identification bar (HBIG07-1) purchased from 
the Qingdao Hope Bio-Tech. Co., Ltd. (Qingdao, China), the biochemical 
tests conducted were confirmed. The PCR products were analyzed by 
one percent agarose gel (1% w/v) electrophoresis, and sequencing was 
performed by Sangon Biotech Co., Ltd. (Guangzhou, China). The 
sequence obtained was homologically compared with 16S rRNA gene 
sequences available in the National Centre for Biotechnology Informa-
tion (NCBI) using the Basic Local Alignment Search Tool (BLAST) pro-
gram to identify the bacteria strain isolated. 

2.4. Genomic DNA extraction 

The genomic DNA of various Bacillus species isolated from the 
commercial probiotics samples was extracted using the TaKaRa MiniB-
EST Bacteria Genomic DNA Extraction Kit Ver.3.0 following the manu-
facturer’s instruction. 

2.5. Resistance to antibiotics 

Antimicrobial Susceptibility Testing of all identified Bacillus species 
was conducted using commercial antibiotics discs purchased from 
Hangzhou Microbial Reagent Co., Ltd., Hangzhou, China. Antibiotic 
discs were carefully placed on Mueller-Hinton agar plates previously 
spread with the probiotic bacteria and incubated for 24 h at 37 ◦C. 

Susceptibility inhibition zones were measured and interpreted, referring 
to the zone diameter interpretive described by Clinical and Laboratory 
Standards Institute (Clinical and Laboratory Standards Institute (CLSI, 
2013) and also following manufacturer’s users’ guidelines. Twelve an-
tibiotics were tested for including; Erythromycin (E, 15 μg), Minocycline 
(MI, 30 μg), Tetracycline (TE, 30 μg), Kanamycin (K, 30 μg), Penicillin 
(P, 10 μg), Ampicillin (AMP, 10 μg), Oxacillin (OX, 1μ), Deoxycycline 
(DX, 30 μg), Cefuroxime (CXM, 30 μg), Gentamicin (CN, 10 μg), 
Neomycin (N, 30 μg), Ceftriaxone (30, μg) 

2.6. Detection of virulence factor genes 

PCR screening was conducted to detect enterotoxigenic genes hblA, 
hblC, hblD, nheA, nheB, nheC, cytK, entFM, and one cereulide synthetase 
gene (ces). The PCR reaction system contained 1 μL of each primer, 1 μL 
template of Genomic DNA extracted, 10 μL of rTaq buffer (Takara, 
China), and 7 μL of double-distilled water. Also, double distilled water 
was used as the template for negative control in all reactions. Sequences 
of all primers used are provided in Table 1. The PCR amplification was 
initiated with denaturation at 95 ◦C for 5 min followed by 33 cycles of 
denaturation at 95 ◦C for 30 s, annealing at the specific temperature of 
each gene for 40 s, and extension at 72 ◦C for 40 s; the amplification was 
completed by holding the reaction mixture at 72 ◦C for 5 min. The PCR 
products were analyzed by agarose gel (1% w/v) electrophoresis. 
Following electrophoresis, gels were photographed under UV 
illumination. 

2.7. Statistical analysis 

All the experiments were performed in triplicate. Microsoft Excel 
(2010) was used to compute mean, percentages, and constructing tables. 

3. Results 

3.1. Isolation and identification of bacteria isolates 

Results showed that some commercial probiotics did not contain or 

Table 1 
Sequences of PCR primers targeting various virulent factor genes in this study.  

Target 
gene 

Primer 5′ to 3′ Amplicon bp 

nheA TACGCTAAGGAGGGGCA 480 (Owusu-Kwarteng et al., 
2017)  GTTTTTATTGCTTCATCGGCT  

nheB CTATCAGCACTTATGGCAG 754 (Owusu-Kwarteng et al., 
2017)  ACTCCTAGCGGTGTTCC  

nheC CGGTAGTGATTGCTGGG 564 (Owusu-Kwarteng et al., 
2017)  CAGCATTCGTACTTGCCAA  

hblA GTGCAGATGTTGATGCCGAT 301 (Owusu-Kwarteng et al., 
2017)  ATGCCACTGCGTGGACATAT  

hblC AATGGTCATCGGAACTCTAT 731 (Owusu-Kwarteng et al., 
2017)  CTCGCTGTTCTGCTGTTAAT  

hblD AATCAAGAGCTGTCACGAAT 411 (Owusu-Kwarteng et al., 
2017)  CACCAATTGACCATGCTAAT  

entFM ATGAAAAAAGTAATTTGCAGG 1,269 (Owusu-Kwarteng et al., 
2017)  TTAGTATGCTTTTGTGTAACC  

Ces GGTGACACATTATCATATAAGGTG 1,271 (Owusu-Kwarteng et al., 
2017)  GTAAGCGAACCTGTCTGTAACAACA  

cytK GTAACTTTCATTGATGATCC 505 (Stenfors & Granum, 
2001)  GAATACATAAATAATTGGTTTCC  
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have fewer microorganisms than declared on their label. In some others, 
no bacteria growth was observed when spread on agar plates. Some 
samples also did not have any known Bacillus species, but rather some 
contained bacteria considered as pathogenic. In total, 49 isolates were 
obtained from the 32 commercial probiotics used, of which 44 were 
Bacillus species required for this study. (see Table 2 for distribution of 
isolates) 

3.2. Resistance to antibiotics 

The results of the antibiotic susceptibility assessment of the isolated 
Bacillus species are shown in Table 3. Almost all of the isolates were 
resistant to Penicillin (90.9 %), Ampicillin (47.7 %), Oxacillin (25 %), 
Erythromycin (18.2 %), Cefuroxime(11.4), Tetracycline (4.5 %), Gen-
tamycin (4.5 %), Ceftriaxone (4.5 %), Minocycline (2.3 %), Neomycin 
(2.3 %) except for Kanamycin and Deoxycycline which recorded no 
resistance. Nevertheless, a good percentage of isolates were susceptible 
to Ceftriaxone (91 %), Gentamycin (91 %), Deoxycycline (86.4 %), 
Kanamycin (84.1 %), Cefuroxime (84.1 %), Minocycline (79.5 %), 
Oxacillin (72.7 %), Erythromycin (68.2 %), Tetracycline (61.4 %), with 
a few fractions being susceptible to Ampicillin (36.4 %) and Penicillin 
(2.3 %) 

3.3. Detection of virulence factor genes among isolates 

Enterotoxin genes nheA, nheB, nheC, hblA, hblC, hblD, and entFM 

together with cytotoxin K (cytK) and cereulide (ces) were amplified with 
PCR reactions. All designated primers used produced amplicons of the 
expected size from their respective target virulence genes. Each PCR was 
repeated three times to confirm the presence of the gene. Results from 
the PCR reaction are presented in Table 4. Three isolates CMPF 4 (Ba-
cillus cereus), CMPF 6 (Bacillus mojavensis), CMPF 41(Bacillus para-
nthracis), were found to harbor the nheA, nheB, nheC, and entFM 
enterotoxin genes. CMPF 4 (Bacillus cereus), CMPF 41(Bacillus para-
nthracis) expressed the hblA, hblC, and hblD hemolytic genes. Only CMPF 
41(Bacillus paranthracis) expressed an amplicon for the cytotoxin K 
(cytK) gene. None of the Bacillus species isolates expressed an amplicon 
for the cereulide (ces) gene 

4. Discussion 

4.1. Bacterial composition of probiotic formulations 

Studies have addressed the poor microbiological quality of com-
mercial probiotic formulations (Celandroni et al., 2019; Jackson et al., 
2019) and the poor correlation in the quality and quantity of the pro-
biotics concerning the specified microorganism stated on their labels, 
and this raises safety concerns to the consumer (Kesavelu et al., 2020). 
Proper identification of strains in probiotics is the beginning of its in 
vitro safety assessment and potential risks (Gueimonde et al., 2013). In 
this study, some samples did not contain any Bacillus species but rather 
contained different bacteria, of which some are considered pathogenic. 
(see Table 2: sample no. 6, 19, 26). The continents of commercial pro-
biotic formulations are mostly difficult to be ascertained (Marteau & 
Shanahan, 2003), and many people depend on the details provided on 
the labels (Sanders et al., 2018). Most commercial probiotics are 
wrongly labeled concerning the actual bacterial constituents (Marcobal 
et al., 2008; Theunissen et al., 2005; Weese, 2003) and their required 
CFU/mL (Chen et al., 2017). This inaccuracy can range from minor 
misreporting to major ones, such as misidentifying component bacteria 
(Weese, 2003). Nonetheless, it cannot be overlooked and makes the 
safety of the product contentious. 

Similarly, this study noticed that not all the commercial probiotics 
assessed contained the probiotic bacteria labeled on the product. With 
this, it can be said that the safety of commercial probiotics on the market 
used in aquaculture is questionable. Safety assessment for commercial 
probiotics, particularly mixed probiotic formulations for aquaculture, 
needs to be established, and the constituents of the product are the basis 
for establishing its safety (FAO/WHO, 2002; Qi et al., 2009). 

Table 2 
Microorganisms Detected and as Declared on Label.  

Sample 
No. 

Microorganism Detected Microorganism Declared on 
Label 

1 B. subtilis Not stated 
2 B. subtilis B. subtilis, B. licheniformis 
3 B. subtilis, B. cereus B. subtilis, B. licheniformis, B. 

gelatins 
4 B. subtilis Not stated 
5 B. mojavensis Not stated 
6 Enterobacter cloacae Bacillus 
7 B. subtilis Bacillus 
8 B. subtilis, B. velezensis Bacillus 
9 B. subtilis, B. mojavensis Bacillus 
10 none B. subtilis 
11 B. subtilis Bacillus 
12 B. subtilis Bacillus 
13 B. velezensis, B. subtilis B. subtilis 
14 B. subtilis, B. velezensis, B. tenquilensis B. subtilis 
15 B. velezensis, B. tenquilensis Bacillus 
16 B. velezensis B. subtilis 
17 B. tenquilensis, B. subtilis B. subtilis, B. licheniformis 
18 B. tenquilensis, B. subtilis B. subtilis 
19 Klebsiella pneumonia, Enterobacter 

cloacae 
B. subtilis, B. licheniformis 

20 B. subtilis B. subtilis, B. licheniformis, B. 
cereus 

21 B. velezensis, B. subtilis B. subtilis 
22 B. tequilensis, B. subtilis B. subtilis, B. licheniformis 
23 B. velezensis, B. tenquilensis B. subtilis, B. licheniformis 
24 B.tenquilensis B. subtilis 
25 B. amyloliquefaciens, B. velezensis B. subtilis 
26 Cronobacter sakazakii, Klebsiella 

pneumoniae 
B. subtilis, B. licheniformis 

27 B. paralicheniformis B. subtilis 
28 B. paralicheniformis compound Bacillus 
29 B. mojavensis B. subtilis, B. cereus 
30 B. tequilensis, B. velezensis. B. 

paranthracis 
B. subtilis 

31 B. subtilis, B. tequilensis B. subtilis 
32 B. tequilensis B. subtilis 

Note: Sample No. 1-32 represents 32 different Bacillus based commercial pro-
biotics used in aquaculture purchased for this study corresponding to various 
bacteria isolated from them and labeled Microorganism. 

Table 3 
Antibiotic Resistance of isolated bacteria.  

Antimicrobial agents 

n=Bacillus sp 

Susceptible (S) Intermediate (I) Resistant (R) 

n (n)% n (n)% n (n)% 

Erythromycin 30 68.2 6 13.6 8 18.2 
Minocycline 35 79.5 8 18.2 1 2.3 
Tetracycline 27 61.4 15 34.1 2 4.5 
Kanamycin 37 84.1 7 15.9 0 0 
Penicillin 1 2.3 3 6.8 40 90.9 
Ampicillin 16 36.4 7 15.9 21 47.7 
Oxacillin 32 72.7 1 2.3 11 25 
Deoxycycline 38 86.4 6 13.6 0 0 
Cefuroxime 37 84.1 2 4.5 5 11.4 
Gentamycin 40 91 2 4.5 2 4.5 
Neomycin 36 81.8 7 15.9 1 2.3 
Ceftriaxone 40 91 2 4.5 2 4.5 

Note: "n" represent the number of isolated Bacillus species and their respective 
percentages ("n%")for Susceptible (S), Intermediate (I), and Resistance (R). 
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4.2. Resistant to antibiotics 

Antibiotics have been used in aquaculture for many decades to aid in 
dealing with diseases (Vignesh et al., 2011). Even though there are some 
challenges with using antibiotics in aquaculture (Cabello, 2006; Cabello 
et al., 2013), they are still being applied with much precaution. (Sub-
asinghe, 2009b; Sun et al., 2020). Resistance to antibiotics is one main 
safety concerns of probiotics (Courvalin, 2006; Jose et al., 2015; Sharma 
et al., 2014). This is due to the ability of these organisms to be mediators 
for the transfer of drug resistance genes to the environment and also to 
other bacteria living in the same habitat (Gueimonde et al., 2013). Most 
Bacillus species are considered beneficial and used as probiotics (Elsha-
ghabee et al., 2017; Ringø et al., 2020), yet some Bacillus species have 
been identified to be capable of causing severe infections and diseases 
(Gao et al., 2018). The Bacillus cereus group of bacteria have been 
acclaimed to have the ability to cause disease (Didelot et al., 2009; 
Ehling-Schulz et al., 2019; Liu et al., 2017b; Rasko et al., 2005). Anti-
biotic therapy is considered effective in treating and eliminating mem-
bers of the Bacillus cereus group (Turnbull et al., 2004). β-lactam 
antibiotics are widely used in commercial antibiotics in the treatment of 
a wide range of infectious diseases (Lingzhi et al., 2018), and infectious 

diseases have been shown to have a major effect on both marine and 
aquaculture economics (Lafferty et al., 2015). β-lactam antibiotics are 
significant ingredients of antibiotics medicaments used in aquaculture 
to handle infectious diseases (Chowdhury et al., 2015; Lara et al., 2012). 
Some of the antibiotics, like penicillin, aid against bacterial infections by 
inhibiting the development of cell walls of pathogens in susceptible 
organisms (Lara et al., 2012; Yocum et al., 1979). In our study, Bacillus 
cereus group isolates CMPF 4 (Bacillus cereus) and CMPF 41 (Bacillus 
paranthracis) were resistant to β-lactam antibiotics; penicillin, ampi-
cillin, oxacillin, cefuroxime, and ceftriaxone used in this study and also 
to minocycline. Similarly, B. cereus isolates were resistant to β-lactam 
antibiotics (Gao et al., 2018; Owusu-Kwarteng et al., 2017; Yibar et al., 
2017). Yu et al. (2019) also observed absolute resistance to β-lactam 
antibiotics penicillin and ampicillin by Bacillus cereus species isolated for 
vegetables in China. Aside Bacillus cereus group isolated, most of the 
other isolates were resistant to β-lactam antibiotics, penicillin, and 
ampicillin. Previous studies attribute this to the profuse production of 
β-lactamases by bacteria, including Bacillus species (Majiduddin et al., 
2002; Owusu-Kwarteng et al., 2017; Park et al., 2009). 

Table 4 
Distribution of Virulence genes in Isolated Bacillus Species.    

Virulence Genes    

nheA nheB nheC ces cytK hblA hblC hblD entFM 

SampleNo.           
1 CMPF 1 – – – – – – – – – 
2 CMPF 2 – – – – – – – – – 
3 CMPF 3 – – – – – – – – – 
3 CMPF 4 + + + – + + + + +

4 CMPF 5 – – – – – – – – – 
5 CMPF 6 + + + – – – – – +

20 CMPF 7 – – – – – – – – – 
22 CMPF 8 – – – – – – – – – 
22 CMPF 9 – – – – – – – – – 
7 CMPF 10 – – – – – – – – – 
8 CMPF 11 – – – – – – – – – 
8 CMPF 12 – – – – – – – – – 
9 CMPF 13 – – – – – – – – – 
9 CMPF 14 – – – – – – – – – 
11 CMPF 15 – – – – – – – – – 
12 CMPF 16 – – – – – – – – – 
13 CMPF 17 – – – – – – – – – 
13 CMPF 18 – – – – – – – – – 
14 CMPF 19 – – – – – – – – – 
14 CMPF 20 – – – – – – – – – 
14 CMPF 21 – – – – – – – – – 
15 CMPF 22 – – – – – – – – – 
15 CMPF 23 – – – – – – – – – 
16 CMPF 24 – – – – – – – – – 
17 CMPF 25 – – – – – – – – – 
17 CMPF 26 – – – – – – – – – 
18 CMPF 27 – – – – – – – – – 
18 CMPF 28 – – – – – – – – – 
21 CMPF 29 – – – – – – – – – 
21 CMPF 30 – – – – – – – – – 
23 CMPF 31 – – – – – – – – – 
23 CMPF 32 – – – – – – – – – 
24 CMPF 33 – – – – – – – – – 
25 CMPF 34 – – – – – – – – – 
25 CMPF 35 – – – – – – – – – 
27 CMPF 36 – – – – – – – – – 
28 CMPF 37 – – – – – – – – – 
29 CMPF 38 – – – – – – – – – 
30 CMPF 39 – – – – – – – – – 
30 CMPF 40 – – – – – – – – – 
30 CMPF 41 + + + – + + + + +

31 CMPF 42 – – – – – – – – – 
31 CMPF 43 – – – – – – – – – 
32 CMPF 44 – – – – – – – – – 

Note: (+) and (-) represents the presence and absence of a gene, CMPF represents isolated Bacillus species shown in Table 2. 
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4.3. Prevalence of virulence genes 

The presence of non-hemolytic enterotoxins (nheA, nheB, and nheC), 
hemolytic (hblA, hblC, and hblD) enterotoxins, enterotoxin complexes 
including enterotoxin FM (entFM), cereulide (ces), and cytotoxin K 
(cytK) in some probiotic bacteria have widely studied (Aragon-Alegro 
et al., 2008; Ehling-Schulz et al., 2006; Gao et al., 2018; Owu-
su-Kwarteng et al., 2017; Ragul et al., 2020). Disease is one major 
challenge faced in aquaculture (Li et al., 2011), and maximum efforts are 
being made to rule out all causes (Flegel, 2019). Therefore, the screening 
for virulence genes in probiotic bacteria is crucial because of the pos-
sibility of gene transfer from the probiotic bacteria into the habitat and 
the bacteria itself, causing diseases and complications to the host. Pro-
biotics are applied in all spheres, including aquaculture, due to their 
several benefits (Pérez-Sánchez et al., 2018; Yirga, 2015), and if these 
known beneficial organisms possess virulence-associated genes, then 
their safety is uncertain. 

The Non-hemolytic enterotoxin (nhe) is a complex pore-forming 
toxin (PFT) that comprises three proteins; nheA (41-kDa), nheB (39- 
kDa), and nheC (40-kDa) (Ganash et al., 2013). With the nhe complex, all 
three proteins are required to reach maximum cytotoxicity following a 
specific binding order on cell membranes (Heilkenbrinker et al., 2013; 
Lindbäck et al., 2010; Liu et al., 2017a). Among the Bacillus strains 
isolated in this study, CMPF 4 (Bacillus cereus), CMPF 6 (Bacillus moja-
vensis), and CMPF 41 (Bacillus paranthracis) were found to possess all 
three non-hemolytic enterotoxins genes (nheA, nheB, and nheC). 
(Lindbäck et al., 2004) observed 100 % cytotoxicity of Bacillus cereus 
associated with the presence of the three nhe complex. Maximal (100 %) 
cytotoxicity is expressed by these Bacillus species used in commercial 
probiotics in aquaculture as they harbor the nheABC genes. Also, these 
three isolated Bacillus species were found to have the enterotoxin FM 
(entFM) gene, whose cytotoxicity is dependent on the bacteria strain 
(Boonchai et al., 2008). Two isolated Bacillus species, CMPF 4 (Bacillus 
cereus) and CMPF 41 (Bacillus paranthracis), expressed the hemolytic 
(hblA, hblC, and hblD) genes. None of the samples produced an amplicon 
for the cereulide (ces) gene. The cytotoxin K (cytK) is a toxin that belongs 
to the family of oligomeric β-barrel pore-forming toxins (Menestrina 
et al., 2001) and is mostly associated with Bacillus cereus and is 
responsible for some severe food poisoning (Fagerlund et al., 2004; 
Hardy et al., 2001).CMPF 4 (Bacillus cereus) and CMPF 41 (Bacillus 
paranthracis) produced amplicon for the cytotoxin K (cytK). These 
confirm the presence of these toxin-related genes in bacteria present in 
commercial probiotic formulations sold on the market, which are 
directly administered to culture organisms. A study conducted by (Cui 
et al., 2020) in China also reported that Bacillus isolates from commer-
cial probiotics expressed high levels of toxicity. Many studies have been 
conducted and have elaborated on these virulence genes associated with 
the species Bacillus (Boonchai et al., 2008; Hendriksen, 2001; Kim et al., 
2020) and this has become a growing concern with the use of probiotics 
in aquaculture (Wang et al., 2008). 

5. Conclusion 

The safety of probiotics is very crucial, and thus much attention is 
needed in safeguarding their usage. The safety of commercial probiotics 
begins with identifying their constituent bacteria. Therefore much 
caution should be taken by producers to identify the bacteria being used 
carefully. Also, labeling is an essential aspect of commercial production. 
Commercial probiotics should be labeled appropriately with accurate 
information regarding the composition of the product. Bacillus species 
are well known for their several benefits in the aquaculture industry and 
several fields, including human medicine and nutrition. Nonetheless, 
some virulent factors and drug resistance traits are associated with some 
species. Therefore Bacillus species should be judiciously selected to be 
used in commercial probiotics. 
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Simon, R., Pélerin, F., Jüsten, P., Urdaci, M.C., 2017. Safety assessment of Bacillus 
subtilis CU1 for use as a probiotic in humans. Regul. Toxicol. Pharmacol. 83, 54–65. 
https://doi.org/10.1016/j.yrtph.2016.11.010. 

Li, X., Li, J., Wang, Y., Fu, L., Fu, Y., Li, B., Jiao, B., 2011. Aquaculture industry in China: 
current state, challenges, and outlook. Rev. Fish. Sci. 19 (3), 187–200. https://doi. 
org/10.1080/10641262.2011.573597. 
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